

Geothermal Energy for Heating and Cooling of Buildings

Federal Ministry of Transport, Building and Urban Development
Unit B 12

Energy-efficiency, energy saving and renewable energies in the building sector

Dipl.-Ing. Klaus Dilmetz

Outlook

- Reasons to increase the use of renewable energies e.g. geothermic energy by heat pumps
- Samples, pilot projects (technical data and experiences):
 - Single-family house
 - Refurbished "Reichstags"-building Berlin
- Outlook new Building Standards with renewable energies

Energy consumption in Germany

Trend of final energy consumption

ca. 40 % buildings

Entwicklung des Endenergieverbrauchs in Deutschland nach Sektoren seit 1990; Quelle: AGEB

En bleu et en vert : le secteur du bâtiment

www.bmvbs.de

source: BMWi

European framework:

security of energy supply

economic efficiency, competitiveness

sustainability, climate protection

- reducing demand of energy
- saving energy
- more energy efficiency and renewables

- reducing energy costs
- economic measures for more energy efficiency
- decreasing energy demand especially for existing buildings

- Kyoto Protocol/ follow-up agreement
- climate change, global warming, ghg emissions

.

European obligation

DIRECTIVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 19 May 2010 on the energy performance of buildings (recast) – (guidelines for all MS) more: www.buildup.eu

Implementation in Germany: "Energy Saving Order" (EnEV)
Requirements for new and existing buildings (e.g. refurbishments, energy certificates)

EPDB - covered scopes e.g.:

heating systems

insulation, energetic quality of building envelope

hot water supply

air conditioning systems

ventilation

energy certificates

illumination

renewable energies e.g. geothermal energy

EPBD

Article 2

Definitions

For the purpose of this Directive, the following definitions shall apply: ...

 'nearly zero-energy building' means a building that has a very high energy performance, ... The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby;

EPBD

Article 9

Nearly zero-energy buildings

- 1. Member States shall ensure that:
- (a) by 31 December 2020, all new buildings are nearly zero- energy buildings; and
- (b) after 31 December 2018, new buildings occupied and owned by public authorities are nearly zero-energy buildings.

Member States shall draw up national plans for increasing the number of nearly zero-energy buildings. These national plans may include targets differentiated according to the category of building.

Strategies to increase renewables and energy efficiency e.g.

Energy Saving Order (EnEV) – Energy Certificates, requirements for buildings

Financial benefits

promotion by e.g. KfW-Federal Bank – additional BAFA for renewable energies

Information, transparency in the market, best practice projects promoting Energy Certificates, PR

Research

program for research in the building sector – ca. 9 Mio. €/a

Samples:

Near surface geothermal energy used by heat-pump system

Source: dena

Sample single Family house:

Near surface geothermal energy used by heat-pump system

Heat pump

Source: dena

Abb. 23 Schema einer Luft/Wasser-Wärmepumpe Quelle: Abb. 23 – 24 Bundesverband Wärmepumpe e. V., Berlin

Abb. 24 Schema einer Erdreich/Wasser-Wärmepumpe

Sceme technical Appliances: Combined geothermal and solar energy use

Abb. 37 Anlagenschema eines Wärmepumpensystems mit Einbindung eines Flachkollektors an den Trinkwasserspeicher.

Coefficient of power – COP Greenhousegas-Emissions

En vert : Pompe à chaleur géothermique (eau eau)

En bleu : Pompe à chaleur air (air eau)

En rouge : Chaudière à condensation (gaz)

Abb. 11 Treibhausgasemissionen (ohne
Berücksichtigung von
Kältemittelverlusten)
sowie Primärenergieaufwand von Wärmepumpen und GasBrennwertkesseln.
Quelle: FhG-ISE

Sample:

Heat source outside air energy used by heat-pump system

Gebäudetyp	Einfamilienhaus
Bau- und Installationsjahr	2010
beheizte Gebäudefläche	127 m²
energetische Gebäudeklasse	Niedrigenergiehaus
Wärmepumpentyp	elektrisch betriebene Wärmepumpe
Heizleistung	7,5 kW (bei A2/W35 nach EN14511)
COP	3,7 (bei A2/W35 nach EN14511)
Kältemittel	R404A .
Einsatzbereich	Heizung und Warmwasser
Wärmequellensystem	Außenluft – außen aufgestellt
Speicher	Pufferspeicher 200 l Trinkwasserspeicher 300 l
Wärmeverteilsystem	Fußboden-, Wandheizung, Handtuch-Radiatoren
Auslegungsheizkreistemperatur	Vorlauf: 38 °C / Rücklauf: 33 °C
Betriebsart	monoenergetisch

Measured COP = 3,3 (from May 2010 to April 2011)

Coefficient of power – COP Heat-pump: Energy source - ground soil

Geothermical temperature potential

Earth crust

Dicke: 0 - 170 km, Temperatur: -50 - 500 °C

Oberer Mantel Dicke: 10 - 900 km, Temperatur: 450 - 1400 °C

Unterer Mantel

Dicke: 900 - 2900 km, Temperatur: 1400 - 3000 °C

Äußerer Kern

Dicke: 2900 - 5100 km, Temperatur: 2900 - 4000 °C

Innerer Kern

Dicke: 5100 - 6371 km, Temperatur: 4000 - 6700 °C

Source: GfZ

Principles and samples for Deep geothermal energy use and storage

ВТ

Reichstag building Berlin: Construction work

Seasonal energy storage e.g. by combined heat and power unit (chp), solar system etc

Energiebedarf des Gebäudeensembles			
Strom élect	ricité 8.600 kW	19.500 MWh/a	
Wärme	12.500 kW	16.000 MWh/a	
Kälte	6.200 kW	2.800 MWh/a	

coldness storage

heat storage

Source: BT

Reichstag building Berlin: Heat storage

Kenndaten		
Sommer (Beladung)	mittlere Fördertemperatur	20°C
	Injektionstemperatur	70°C
	eingelagerte Wärme	2.650 MWh/a
Winter (Entladung)	Fördertemperatur	65-30°C
	entnommene Wärme	2.050 MWh/a
Bilanz	Förderaufwand	280 MWh
	Verhältnis genutzter zu eingelagerter Wärme	77%
* Kenndatenermittlung auf Basis dynamischer Simulationsrechnung		

Summer

Winter

efficiency factor 77%!

Reichstag building Berlin: Coldness storage

Kenndaten		
Sommer (Entladung)	Fördertemperatur	6-10°C
	Injektionstemperatur	15-28°C
	entnommene Kälte	3.950 MWh/a
Winter (Beladung)	Mittlere Fördertemperatur	22°C
	Injektionstemperatur	5°C
	eingelagerte Kälte	4.250 MWh/a
Bilanz	Förderaufwand	220 MWh
	Verhältnis genutzter zu eingelagerter Kälte	93%
	(- · · · · · · · · · · · · · · · · ·	1

^{*} Kenndatenermittlung auf Basis dynamischer Simulationsrechnung: Temperaturveränderungen während des Entladezyklus sind berücksichtigt. Das System befindet sich noch nicht in "eingeschwungenem Zustand".

Summer

Winter

efficiency factor 93%!

Abb 7: Investitionskosten für realisierte Wärmespeicher-Konstruktionen (volumenbezogen; inkl. Planung, ohne MwSt.)			
Aquiferspeicher	Betonspeicher	Stahltanks	GFK-Speicher
bis zu 25 Euro/m³ (bei Volumina von 100.000 m³)	450 - 120 Euro/m³ (abhängig vom Speichervolumen)	3.000 - 600 Euro/m³ (Angabe für 0,2 bis 100 m³); bei Großspeichern (10.000 m³) unter 100 Euro/m³	432* - 125 Euro/m³ (abhängig vom Speichervolumen) *Neue Fertigungs- technologie: ab 300 m³

$\pmb{ENERGIEAUSWEIS}_{\textit{für Nichtwohngebäude}}$

gemäß den §§ 16 ff. Energieeinsparverordnung (EnEV)

Aushang Gültig bis: 14.06.2019 Gebäude Hauptnutzung/ Deutscher Bundestag / Gebäudekategorie Parlamentsgebäude Sonderzone(n) Adresse Platz der Republik 1, 11011 Berlin Gebäudeteil Reichstagsgebäude Baujahr Gebäude 1894 Baujahr Wärmeerzeuger 1998 Baujahr Klimaanlage 1998 Nettogrundfläche

Unterschrift des Ausstellers

Source: BT

Sea water energy generation

The Värtan Trigeneration Plant

NIMROD

Maximum capacity

•CHP ("KVV 6") 145 MW el /

310MW heat

Biooil fired CHP 190

190 MW el / 320 MW heat

 Heat pumps/ chillers 275 MW heat/ 150 MW cooling

Peak load boilers

620 MW heat

Electric boilers

230 MW heat

· Gas turbine 3

54 MW el

Accumulator

40 000 m3 / 2 000 MWh

Energy production/2009

Heat
 Power

3 287 GWh/year 930 GWh/year

Cooling

313 GWh/year

Fortum

Sea water energy generation

This is how it works

- Cold seawater used to cool the closed water loop of the District Cooling system. The seawater is then returned to the lake
- Energy from the district cooling system is recovered and recycled in the district heating system
- Nighttime and times when the need for cooling is limited, cold water is stored in the accumulator
- The low temperature in the district cooling system is transferred to the building's closed loop distribution system via a heat exchanger.

Sea water energy generation

Heat Pump in focus

 Fortum has 6 bigger heat pump plants in Stockholm, most of them are designed to produce heat and cooling simultaneously.

Site visit

`		
_	Heating	Cooling
Ropsten1 & 2	150 MW	0 MW
Ropsten 3	100 MW	110 MW
Nimrod	36 MW	48 MW
Hammarby	230 MW	40 MW
 Kista/Akalla 	25 MW	48 MW
Vilunda	44 MW	10 MW

Source: www.fortum.com

Outlook

- increase of energy efficiency e.g. high- efficient heating, cooling and airconditioning systems
- increasing use of renewable energy e.g. PV-Systems / Solar-heating/cooling and geothermal energy
- better building design, engineering and combination of technical systems, building construction and the renewable energies
- further development of regulations, education and training quality level especially for renewable energies
- best practice examples to promote solutions for future standards with a low energy demand supported e.g. by geothermal energy

thank you for your attention!

Federal Ministry of Transport, Building and Urban Development

Unit B12

Invalidenstraße 44 D-10115 Berlin Klaus Dilmetz

Tel.: 030 2008 7127

klaus.dilmetz@bmvbs.bund.de