

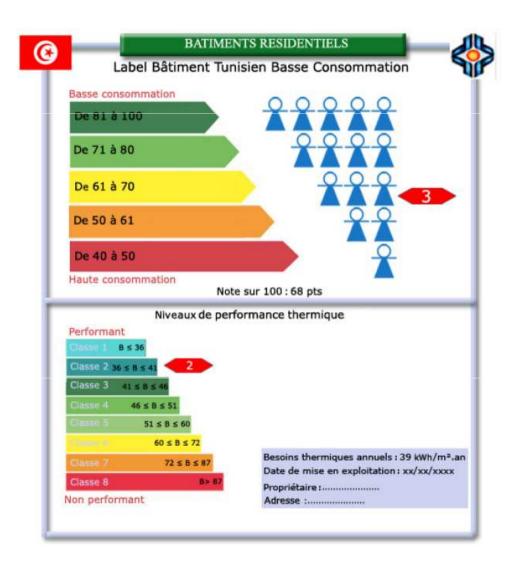
JUMELAGE Eco-Construction

MINISTÈRE DE L'ÉGALITÉ DES TERRITOIRES ET DU LOGEMENT

MINISTÈRE DE L'ÉCOLOGIE, DU DÉVELOPPEMENT DURABLE ET DE L'ÉNERGIE

Ventilation de Confort

CETE Mediterranée


Nicolas Cabassud Bruno Cornen

> TUNIS 30-31 Janvier 2012

Ressources, territoires et hankals Énergie et climat Développement durable Prévertion des risques Infrastructures, transports et mer

> Présent pour l'avenir

Label BTuBC

JUMELAGE Eco - Construction

Composantes du Label BTuBC

	Nombre d'indicateurs			
Cible	Hôtels	Bureaux	Santé	Résidentiel collectif
ENVELOPPE	4	4	4	4
EQUIPEMENTS	8	6	8	5
ECO-GESTION	4	4	4	4

Critères sur l'enveloppe retenus

	RESIDENTIEL COLLECTIF				
	INDICATEURS	CRITÈRE(S)	COMMENTAIRES		
Щ	Besoins spécifiques en chauffage et refroidissement	KWh/m2/an	Besoins énergétiques spécifiques pour le chauffage et le refroidissement		
dao	Architecture Bioclimatique et Aménagements intérieurs	Solaire passif	Nature de la paroi et constituants, orientation, configuration: compacte ou éclatée, taux de vitrage		
	Integration of usage des	Usage matériaux	Matériaux engendrant une efficacité énergétique		
3	matériaux locaux	locaux et énergie	directe ou indirecte : en fabrication, en transport ou		
Ž		grise	en exploitation.		
ш	Accompagnement par un	Audit préalable	Mise en place des dispositions réglementaires pour le		
	auditeur	sur plan	classement de l'établissement		

	RESIDENTIEL COLLECTIF				
	INDICATEURS	CRITÈRE(S)	COMMENTAIRES		
	Equipements de chauffage	СОР	Coefficient de performance des équipements de chauffage		
EQUIPEMENTS	Equipements de refroidissement	ESER	Coefficient de performance saisonnier des équipements de refroidissement		
PEM	Eclairage Rendement, %LBC		Rendement des luminaires / Pourcentage en lampes basse consommation		
EQUI	Gestion et comptage	GTC	Gestion technique totale ou partielle des équipements énergivores Comptage total ou partiel des usages énergivores		
	Energie renouvelable et récupération d'énergie	PV, Eau solaire etc.	Mobilisation des énergies renouvelables Récupération de l'énergie sur les équipements de production calorifique et frigorifique		

- Réglementation Tunisienne bâtiments collectifs :
 - Approche performancielle : Calcul de BECTh
 - OU Approche prescriptive

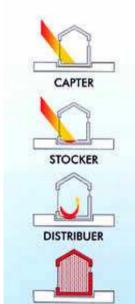
Annexe 1 Les valeurs maximales des propriétés thermophysiques de l'enveloppe des bâtiments résidentiels

	Taux des baies vitrées	des toitures exposées (W/m².K)	des murs extérieurs (W/m².k)	U des vitrages (W/m².k)	SC* des vitrages
	Faible	≤0,75	≤ 1,10	≤ 6,20	≤0,95
Zone climatique	Moyen	≤0,75	$\leq 1,10$	≤ 6,20	≤0,70
réglementaire ZT1		\leq 0,75	$\leq 1,10$	≤ 3,20	≤ 0,85
	Elevé	\leq 0,75	$\leq 1,10$	≤ 3,20	$\leq 0,75$
	Très élevé	≤ 0.65	≤ 0.80	≤ 3,20	≤ 0.70
	Faible	\leq 0,75	$\leq 1,10$	≤ 3,20	≤0,95
Zone climatique		≤0,75	≤ 0,80	≤ 6,20	≤0,95
réglementaire ZT2	Moyen	≤0,75	≤ 1,10	≤ 3,20	≤0,70
	Elevé	\leq 0,75	$\leq 0,70$	≤ 3,20	≤0,70
	Très élevé	\leq 0,65	$\leq 0,70$	≤ 1,90	≤0,60
	E-ill-	≤0,75	≤ 1,10	≤ 3,20	≤ 0,85
Zone climatique	Faible	≤0,75	≤ 0,80	≤ 6,20	≤ 0,80
réglementaire ZT3	Moyen	≤0,75	≤ 1,10	≤ 3,20	≤0,60
regrementant 215	Elevé	≤0,65	\leq 0,70	≤ 3,20	≤0,60
	Très élevé	L'approche prescriptive n'est pas admise pour cette configuration			

SOMMAIRE

- 1 Architecture bioclimatique
- 2 Ventilation de confort thermique
- 3 Les dispositions
- 4 Exemples de cas concrets

Stratégies passives : Eté - Hiver

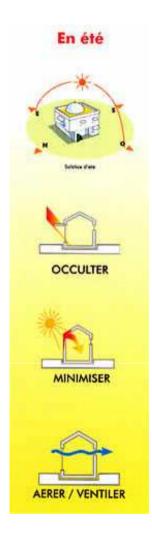


La stratégie Hiver

Implantation

Orientation

Forme architecturale


CONSERVER

Capter les calories solaires

Stocker les calories dans les parois

Distribuer les calories dans l'espace habité

Conserver les calories et limiter leur déperdition

La stratégie Eté

Implantation

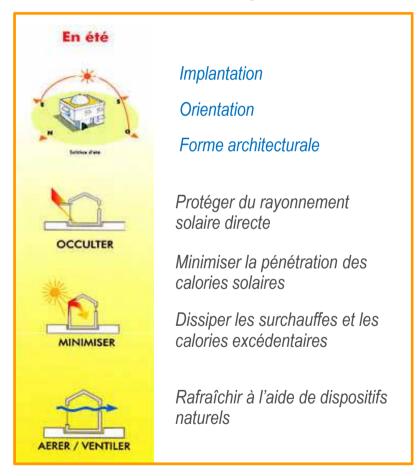
Orientation

Forme architecturale

Protéger du rayonnement solaire directe

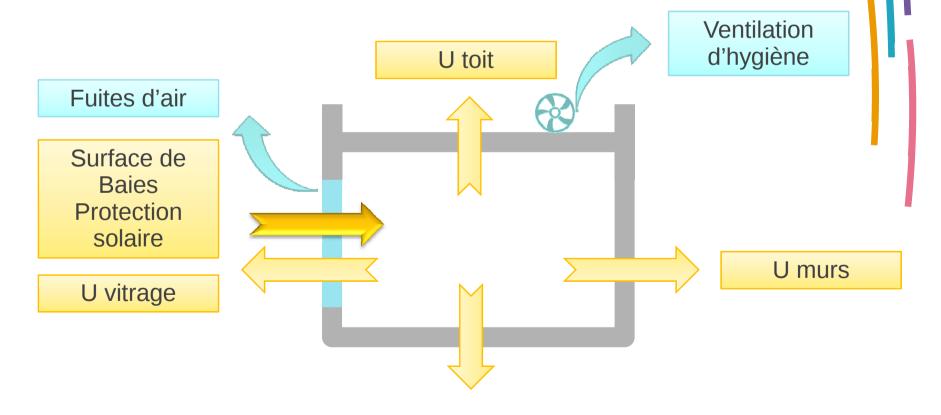
Minimiser la pénétration des calories solaires

Dissiper les surchauffes et les calories excédentaires


Rafraîchir à l'aide de dispositifs naturels

Stratégies été : Climatisation vs Passif

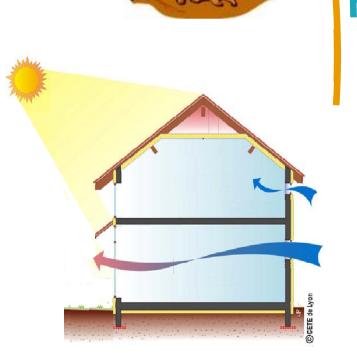
La stratégie CLIM


La stratégie PASSIVE

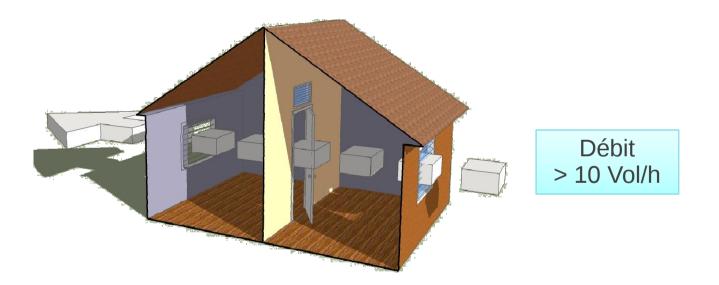
ETANCHEITE VENTILATION

Rappel de l'évaluation des Besoins de chaud / Froid

BESOINS CH / FR = Pertes à travers les parois +
 Pertes par renouvellement d'air
 Apports (solaires, internes...)


Architecture bioclimatique =

Tirer parti des potentialités offertes par l'environnement du bâtiment pour :


- Limiter les besoins énergétiques du bâtiment
 - Isolation
 - Taux de vitrage
 - Orientation
 - Compacité...

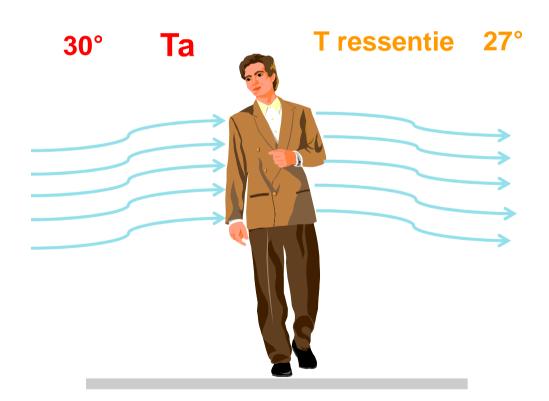
B ch / Fr

- Assurer le confort thermique
 - Protection solaire
 - Inertie
 - Ventilation de confort

- La ventilation de confort thermique :
 - Mise en mouvement de grands volumes d'air destinés à :
 - 1. Evacuer les accumulations de chaleur
 - 2. Créer un courant d'air de confort

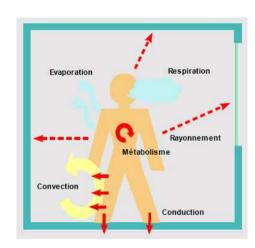
Ne pas confondre avec la ventilation d'hygiène!!

Débit < 1 Vol/h

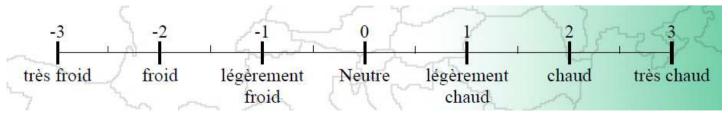

- La ventilation de confort
 - 1. Evacue l'accumulation de chaleur :
 - Apport solaire
 - Apports internes

Isolation

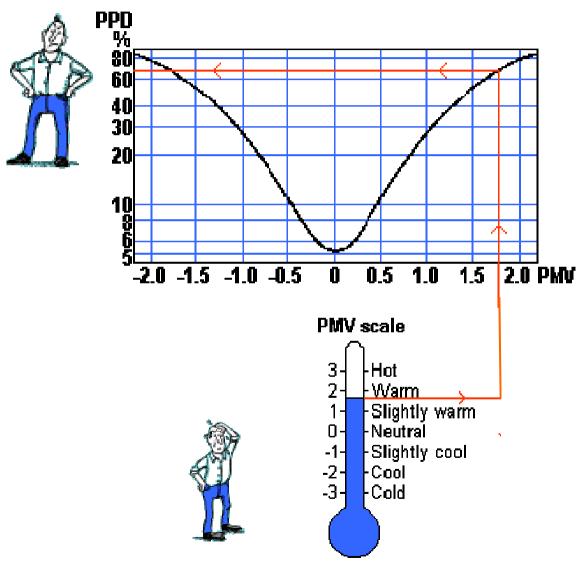
Accumulation de chaleur


- La ventilation de confort
 - 2. crée un effet de refroidissement
 - Ce mouvement d'air amplifie les échanges convectifs entre le corps et son ambiance → effet de refroidissement

Confort thermique :


Selon Fanger, les votes de sensation thermique (PMV) sont prévisibles à l'aide des paramètres suivants :

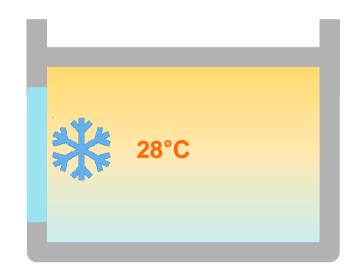
- Température d'air & Temp rayonnement
- Humidité relative
- Vitesse d'air
- Métabolisme
- Vêture

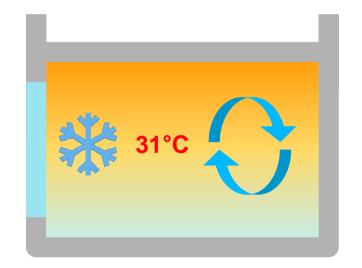


Echelle de Confort thermique

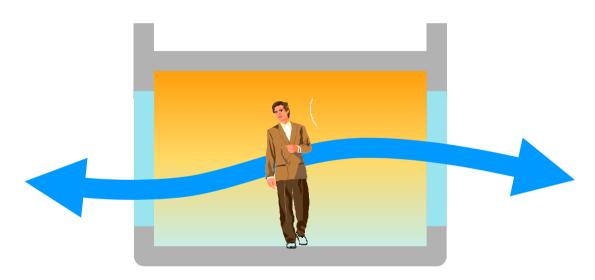
Cf EN 15251 / ISO 7730

Confort thermique :


Effet de refroidissement ressenti :


Vitesse d'air (m/s)	Refroidissement équivalent (°C)
0,1	0
0,3	1
0,7	2
1	3
1,6	4

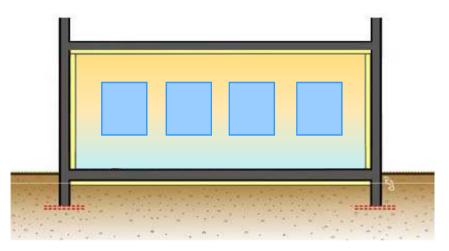
La ventilation mécanique génère un déplacement de l'air avoisinant les 0.025 m/s qui n'a ainsi aucune incidence sur le confort ressenti.

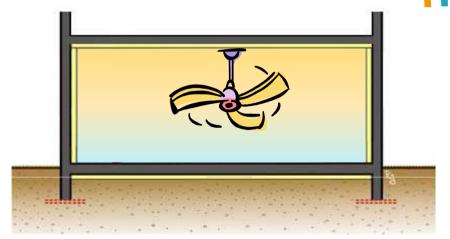

- Applications : Bâtiment Climatisé
 - La présence d'un courant d'air permet de remonter la consigne de 2 à 3°C et ainsi de limiter le recours à la climatisation.

Bâtiment étanche + Système mécanique

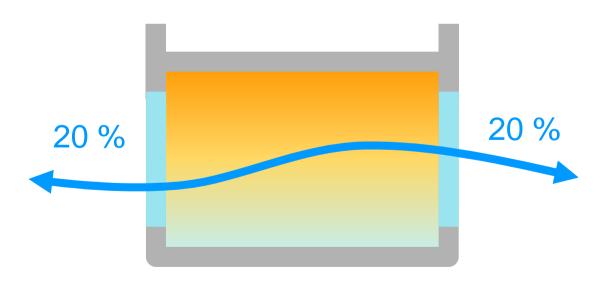
- Applications : Bâtiment non climatisé
 - A l'aide d'une bonne conception, un bâtiment peut être confortable une grande partie de l'année sans avoir recours à la climatisation.

Ventilation naturelle


Oispositions permettant de créer une ventilation de confort :


De manière naturelle :

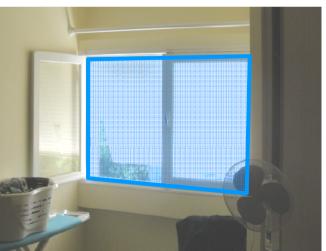
Brasseurs d'air, ventilateurs ...



Ventilation naturelle :

Distribution des ouvertures :

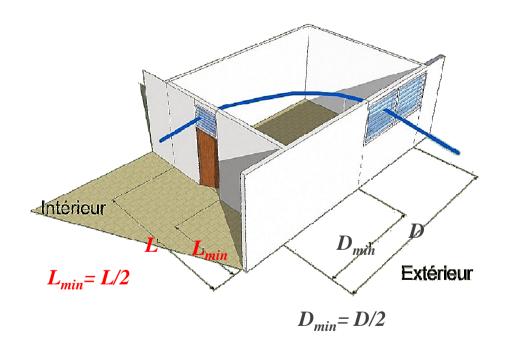
- Taux minimal d'ouverture sur au moins 2 orientations différentes
 → ventilation traversante dans le bâtiment.
- Exemple : Ile de La Réunion > 20 % sur 2 façades



Ventilation naturelle :

Distribution des ouvertures :

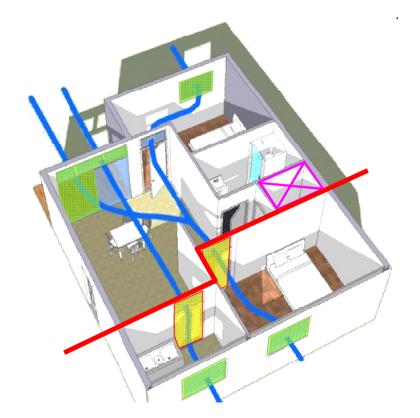
- Le taux d'ouverture comptabilise la surface de passage effectif de l'air → Attention au type de menuiseries
- Les baies coulissantes divisent la surface libre par 2 :



Ventilation naturelle :

Organisation intérieure :

Disposition des ouvertures intérieures :



Ventilation naturelle :

Organisation intérieure :

Section minimale d'écoulement intérieur :

JUMELAGE Eco - Construction

Ventilation naturelle :

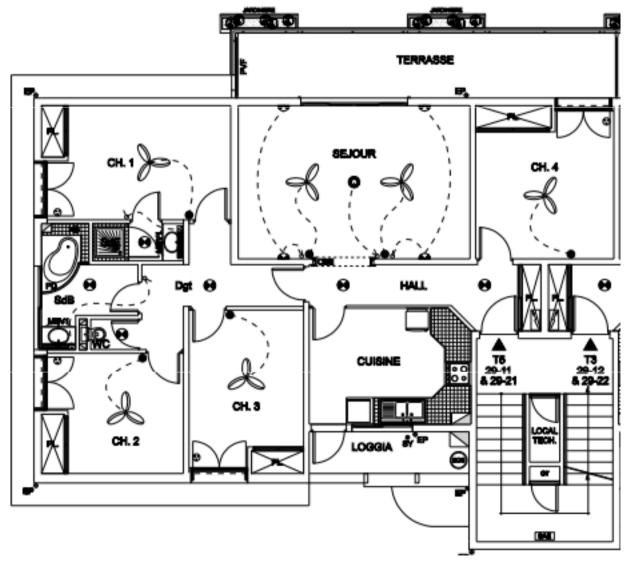
Choix de protections solaires adaptées :

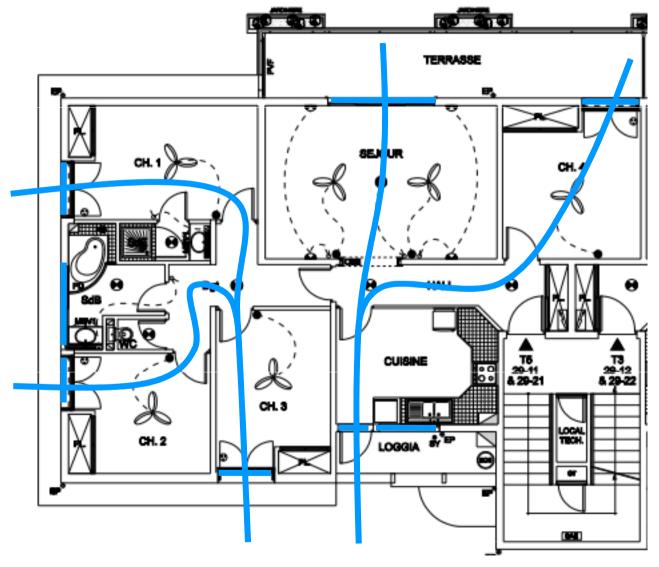
o Elles doivent laisser passer le flux d'air en position fermée.

Ventilation mécanique :

Brasseurs d'air ou ventilateurs

- A disposer dans les pièces principales ou d'activités de manière à créer un léger courant d'air (< 1m/s)
 - Avantage : Très faible consommation
 - Inconvénient : Nécessite une hauteur sous plafond minimale.





JUMELAGE Eco - Construction

Exemple 1 : Bâtiment collectif à La Réunion :

Exemple 1 : Bâtiment collectif à La Réunion :

JUMELAGE Eco - Construction

JUMELAGE Eco - Construction

JUMELAGE Eco - Construction

JUMELAGE Eco - Construction

JUMELAGE Eco - Construction

JUMELAGE Eco - Construction

JUMELAGE Eco - Construction

Conclusion

- La ventilation de confort :
 - o Pourrait être mise en valeur dans les bâtiments climatisés en vue de repousser et réduire le recours à la climatisation.
 - o Pourrait être expérimentée dans des bâtiments non climatisés dans le contexte Tunisien (faible gradient jour / nuit estival)

JUMELAGE Eco - Construction